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In this paper, a new unstructured-grid/finite volume incompressible Navier–Stokes
solver, based on a high-order characteristics-based method, the artificial compress-
ibility method, and a matrix-free implicit dual time-stepping scheme, has been de-
veloped to study unsteady free surface flows. The free surface effects are calculated
using the volume of fluid (VOF) method and continuum surface force. The transport
equation for the VOF is numerically solved using exactly the same method for the flow
solver. A number of test cases have been studied to validate the proposed method
and demonstrate its capability by comparison with other schemes and published
results. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

Simulation of free surface flows is difficult, primarily because boundary conditions are
required on arbitrarily moving surfaces which have to be located in the flow field accurately
over a long period of time. Generally, there are three approaches to compute free surface
flows, namely: (i) the surface fitting method, (ii) the surface capturing method, and (iii) the
surface tracking method. Schematic representations of these methods are given in Fig. 1.
In the surface fitting method (Fig. 1a), the interface is tracked by attaching it to a mesh
surface which is forced to move with the interface. This can be considered a Lagrangian
mesh method. The surface capturing method (Fig. 1b) uses an indicator function to mark
the fluids on both sides of the free surface. And the mesh remains fixed. Therefore it is a
Eulerian mesh method. In the surface tracking method (Fig. 1c), the interface is represented
and tracked explicitly by special marker points. The grid also remains fixed. Thus it can be
considered a hybrid Eulerian–Lagrangian mesh method.
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(a) Surface Fitting Method (c) Surface Tracking
Method

(b) Surface Capturing
Method
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FIG. 1. Surface fitting, surface capturing, and surface tracking methods.

Surface fitting methods are efficient and accurate in the study of shaping processes of
materials with a certain stiffness, such as extrusion and embossing. However, these methods
rapidly become inappropriate, indeed impossible, to apply with less viscous materials that
undergo large deformations. Mesh regenerations are necessary when mesh cells and ele-
ments become highly skewed, to prevent computational failures. This can make the surface
fitting scheme become very complicated and inefficient. On the other hand, various surface
tracking techniques are also efficient and accurate in locating the interface in the fluids
because of the Lagrangian nature of the surface tracking. Implementation of the surface
tension force is also straightforward given the location and curvature of the free surface.
The limitation of these methods is their inability to cope naturally with folding or rupturing
interfaces.

By comparison, the surface capturing method is relatively simple and versatile for com-
putation of free surface flows because the indicator function can be updated by solving a
convection equation and the interface can be treated as an internal surface. In addition no
mesh regeneration is necessary. The most popular surface capturing methods include the
marker and cell (MAC) method [3], the level set (LS) method [4] and the volume of fluid
(VOF) method [1]. The MAC method, which allows arbitrary free surface flows to be sim-
ulated, is widely used and can be readily extended to three dimensions. Its drawback lies in
the fact that it is computationally demanding to trace a large number of particles, especially
in 3D simulation. In addition, it may result in some regions void of particles because the
density of particles is finite. The LS method is another method which is also being widely
used. It has been applied to the modeling of flame advection [4] and bubble and droplet
motions [5, 6]. The level set function keeps its initial minimum and maximum values; thus
the maximum value between two merging interfaces remains the same, causing a steep
gradient and an impenetrable sheet between them. It is therefore necessary to reinitiate the
distance function after each time step [5, 6].

The use of volume fractions to mark the fluid regions is adopted because of its efficiency
and simplicity and the natural way in which complex interfaces can be treated as internal
moving boundaries. The volume fractions are convected through the flow domain by solving
a scalar convection equation. The method of using volume fractions is robust enough to
handle the breakup and coalescence of fluid masses. Furthermore, because this method uses
a continuous function it does not suffer from the lack of divisibility that discrete particles
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exhibit. On the other hand, differencing schemes applied to the volume fraction convec-
tion equation can introduce numerical diffusion and smear the step profile of the interface
over several cells. To avoid this smearing, special care needs to be taken to minimize the
numerical diffusion. The following approaches are used to accomplish this: (1) free sur-
face reconstruction using line techniques [7–11]; (2) high-resolution differencing schemes
[12–17]. It becomes complicated to use a line reconstruction scheme on unstructured grids
and more difficulty is encountered in extending it to three-dimensional calculations. The
use of high-resolution schemes is promising, but existing schemes are still too diffusive for
the capturing of sharp interfaces. Implementation in multiple dimensions is also restricted
to the technique of operator splitting. A generalization for implementation on unstructured
meshes is still required. Recently an unstructured-grid finite volume method based on the
projection scheme [34] was developed for free surface flow simulation. In this method, a
computational cell is considered a logical cube and cell vertices are allowed to coincide in
physical space; thus unstructured grids of various types can be supported. The advantage
of this method is that it can support a mixture of different cell types. But the disadvantage
is that the meshes may not be generated easily and fully automatically, and if a fully un-
structured grid, such as a triangular or tetrahedral mesh, is used, the data structure may not
be efficiently utilized.

In this study, the VOF method is adopted and implemented into a finite volume (FV)
procedure utilizing fully unstructured (triangular) meshes. A new unstructured FV incom-
pressible Navier–Stokes (NS) solver based on a high-order characteristics-based scheme
and a matrix-free implicit dual time-stepping scheme was developed for calculating free sur-
face flows. The interface-capturing method using VOF and continuum surface factor (CSF)
[2] was adopted to treat surface tension as a localized volume force, thus eliminating the
need for detailed interface information. The VOF equation was also discretized by the same
high-order characteristics-based FV scheme and integrated in time also by the implicit dual
time-stepping method. As a result, the new solver has the following unique features com-
pared with other finite volume schemes for computing free surface flows: (1) it can handle
arbitrary boundary shapes easily, and the unstructutred meshes used can be generated fully
automatically. And the method can be readily extended for three-dimensional computation.
(2) It can tackle highly complex free surface flow problems accurately as a result of the
use of the high-order characteristics-based finite volume method which is directly based on
the conservation laws. (3) It is stable and efficient due to the use of the matrix-free implicit
dual time-stepping scheme for all the equations because the time-step size is not limited
by the stability condition and no matrix manipulation is required. To further improve the
efficiency of the solver, an edge-based method is adopted for the calculation of convection
fluxes while viscous fluxes are calculated using a cell-based method.

2. MATHEMATICAL MODELS

Here we consider incompressible flows with two different fluids. The density of one
fluid is ρl and the density of the second fluid is ρg. The nondimensional governing 2D
equations, modified by the artificial compression method (ACM) [33], are given in vector
form as

C
∂W
∂τ

+ K
∂W
∂t

+ ∇ · �Fc = ∇ · �Fv + �S, (2.1)
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where

W =


 p

�U
ϕ


; �Fc =




�U
�U �U + p

ρ
δi j

ϕ �U


; �Fv =




0
1

Re∇ �U
0


;

K =

 0 0 0

0 1 0
0 0 1


; C =




1

β
0 0

0 1 0
0 0 1


; �S =




0

1

ρ
�F sv + �Fg

0


.

In all the equations above, W is the vector of dependent variables. �U is the velocity vector;
u and v are velocity components in x and y coordinate directions; p and ρ are pressure and
density, respectively. �Fc and �Fv are the convective flux and viscous flux vectors. �S contains
the surface tension and gravity terms. The first term on the left-hand side of Eq. (2.1) is a
partial derivative with respect to pseudo-time τ (the artificial compression term), which is
introduced to couple velocity and pressure fields for the calculation of pressure based on the
divergence-free condition. C is a preconditioning matrix that arises with the implementation
of the artificial compressibility method. K is the unit matrix with its first element being zero.
On the other hand, t is the physical time. Since the surface tension and gravity play significant
roles during the development of a free surface flow process, the combined effects for surface
tension and gravity are included. �Fg is the gravity force per unit mass and is given as

�Fg = �ng

Fr
, (2.2)

where Fr is the Froude number and �ng is the unit vector along the prescribed direction of
gravity. �F sv is the surface tension force per unit volume, given by

�F sv = κ∇ϕ

[ϕ]

1

We
, (2.3)

where κ is the curvature of the interface and We is the Weber number. [ϕ] denotes the
amount of jump in the fluid volume indicator function ϕ across the interface. The curvature
can be calculated as

κ = −∇ · �n = −∇ ·
(∇ · ϕ

|∇ϕ|
)

. (2.4)

ϕ is a function of space and time, which is advected in the flow field according to the
advection equation

dϕ

dt
= ∂ϕ

∂t
+ ( �U · ∇)ϕ = 0. (2.5)

The fluid volume indicator function ϕ is set to 1 in the liquid region and 0 in the gaseous
region. For the interface between liquid and gas, ϕ is between 0 and 1. Hence we have

ϕ(x, t)

{=1 If x ∈ the liquid (fluid 1)
=0 If x ∈ the gas (fluid 2) (2.6)

0 < ϕ(x, t) < 1 If x ∈ the interface.
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The above equations are closed with the constitutive relations for the density and dynamic
viscosity

ρ = ϕρl + (1 − ϕ)ρg (2.7)

µ = ϕµl + (1 − ϕ)µg. (2.8)

The total density conservation equation is replaced by the convection equation for the fluid
volume indicator, and they are equivalent if ρg and ρl are constant.

The nondimensional variables used in above equations are defined as

x = x∗

L∗ ; y = y∗

L∗ ; u = u∗

u∗∞
; ν = ν∗

u∗∞
; ρ = ρ∗

ρ∗∞
;

p = p∗

p∗∞
; p∗

∞ = ρ∗
∞(u∗

∞)2 �U =
�U ∗

u∗∞
; t = t∗

L∗/u∗∞
;

Fr = u∗
∞√

gL∗ ; Re = ρ∗u∗
∞L∗

µ∗ ; We = ρ∗
∞(u∗

∞)2L∗

σ ∗∞
,

where L∗ denotes the reference length and u∗
∞denotes the reference velocity. Terms with su-

perscript ∗ indicate dimensional quantities, and the subscript ∞ indicates the other reference
terms.

Equation (2.1) can be recast in integral form as follows:

C
∂

∂τ

∫∫
S

W d S + K
∂

∂t

∫∫
S

W d S +
∫∫

S

∇ · �Fc d S =
∫∫

S

∇ · �Fv d S +
∫∫

S

S d S. (2.9)

When convergence is reached in time-marching in pseudo time, the derivative terms associ-
ated with pseudo time τ disappear and the original unsteady incompressible Navier–Stokes
equations are recovered as shown below:

K
∂

∂t

∫∫
S

W d S +
∫∫

S

∇ · �Fc d S =
∫∫

S

∇ · �Fv d S +
∫∫

S

S d S. (2.10)

3. NUMERICAL METHODS

3.1. Unstructured Finite Volume Method

In this work, the finite volume (FV) method is used to discretize the governing equations.
In an FV method, the computational domain is covered by a set of time-invariant, nonover-
lapping control volumes which are the median dual of a triangular mesh (see Fig. 1d). On
each of these control volumes, the integral form of the governing equations (Eq. (2.9)) is
discretized.

Here a cell-vertex scheme is adopted, i.e., all computed variables in vector W are stored
at vertices of the triangular cells. The vertices of the median dual mesh are located at the
centroids of the triangles and their edges. Each dual edge is thus composed of two line
segments as shown in Fig. 1d. The scheme is fully conservative at both the cell and global
levels since the discretized equations are derived from the integral forms of conservation
laws over the control volumes. This property is particularly important for the accurate
calculation of fluid flows with discontinuities.
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FIG. 1d. Construction of control volume of vertex P.

Spatial discretization is performed by using the integral form of the governing equations
over the control volume surrounding the node or vertex, P:

C
∂

∂τ

∫∫
Scv

WP d S + K
∂

∂t

∫∫
Scv

Wp d S +
∫∫

Scv

∇ · Fc d S =
∫∫

Scv

∇ · Fv d S +
∫∫

Scv

SP d S.

(3.1)

With the introduction of the artificial compressibility method of Chorin [32], a pseudo
time derivative of pressure is added to the continuity equation. Thus, the governing equa-
tions are transformed into a system of hyperbolic equations. The computation of convective
terms in these equations can be performed using simple upwind, central difference, and
characteristics-based schemes. In the simple upwind scheme, the wave propagation prop-
erties of the underlying hyperbolic system are taken into account. An advantage of this
method is that they are naturally dissipative and no additional artificial viscosity term is
required. The resulting flow variables at the boundary center, Ci j , are given as

�U i j

{= �U P If ( �Fc)
k
i j ≥ 0

= �U Ni If ( �Fc)
k
i j < 0,

(3.2)

where ( �Fc)
k
i j is the convection flux through part of the control volume boundary 1-Ci j -2

in Fig. 1d. It is known that simple upwind schemes introduce a large amount of numerical
diffusion in the solution.

The central difference scheme does not attempt to account for the wave propagation
properties present in the governing equations. In this method, a simple average of the two
fluxes on both sides of the interface is used. However, artificial viscosity must be added to
stabilize the central difference scheme. A standard scalar dissipation model by Jameson and
Marriplis [33] was introduced. A first-order-accurate (second difference) artificial viscosity
term is used to suppress oscillations in the vicinity of shock, and a third-order-accurate
(fourth difference) viscosity term is used to suppress odd–even modes in the smooth regions
of the flow. Although this approach is relatively simple, the coefficients in the artificial
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viscosity terms must be adjusted to obtain stable results with minimum contamination of
unphysical viscosity.

To introduce the upwind scheme using an edge-based procedure, the convection term is
transformed as

∫∫
Scv

∇ · �Fc d S =
∮

Lcv

�Fc · �n dl =
nedge∑
k=1

[
(�Fc)

k
i j · �n�lk

]
, (3.3)

where nedge is the number of edges associated with vertex P , ( �Fc)
k
i j is the convection flux

through the part of the control volume boundary (similar to 1-Ci j -2 in Fig. 1d) whose length
is �lk . Therefore, all the fluxes are calculated for the edges and then collected at the two
ends of each edge for updating of flow variables in time-marching. This edge-based method
leads to higher efficiency in computation and reduced data storage requirements compared
with other methods, such as the cell-centerd method.

The viscous term is calculated by a cell-based method

∫∫
Scv

∇ · �Fv d S =
∮

Lcv

�Fv · d�l =
ncell∑
i=1

(�Fv · ��lc)i = 1

2

ncell∑
i=1

(�Fv · ��l p)i , (3.4)

where ��lci is the part of the control volume boundary in cell Ci (as shown in Fig. 1d),
and ��l pi is the edge vector of the cell edge apposite to vertex P of the triangle under
consideration. Here ( �Fv)i is calculated at the centre of the triangle cell with a vertex P ,
which can be obtained by using Green’s Theorem based on the variables at the three vertices
of the triangle. The gradient of a flow variable � at the center of a cell is evaluated as

∇�|celli =
∫∫

Scell ∇�d S∫∫
Scell d S

=
∫

Lcell ��n · dl∫∫
Scell d S

, (3.5)

where Scell is the area of cell i and Lcell is the boundary edges of cell i . For flow variables at
a node, the calculation is based on the area (denoted by S) averaging of those at the centers
of the surrounding cells:

∇�|nodek =
∑N

i=1 (∇�|cell i · Scell i )∑N
i=1 Scell i

. (3.6)

Scelli is the area of the triangular cell i as shown in Fig. 2 and N is the number of cells
associated with node k.

When using the upwind scheme in the FV method, one needs to know the flow properties
at the left and right sides of the control volume surface. Here the left and right state vectors
WL and WR at a control volume surface are evaluated using an upwind-biased interpolation
scheme, the MUSCL (monotonic upstream schemes for conservation laws) scheme [14],

WL = Wi + 1

4
[(1 − κ) �−

i + (1 + κ) �+
i ] (3.7)

WR = Wi + 1

4
[(1 − κ) �+

i + (1 + κ)�−
i ], (3.8)
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k

i

FIG. 2. Viscous flux calculation.

where

�+
i = �−

j

= W j − Wi

�−
i = Wi − Wi−1

= 2 �i j · ∇Wi − (W j − Wi )

= 2 �i j · ∇Wi − �+
i

�−
j = W j+1 − W j

= 2 �i j · ∇W j − (W j − Wi )

= 2 �i j · ∇W j − �−
i .

Therefore,

WL = Wi + 1

2
[(1 − κ) �i j · ∇Wi + κ�+

i ] (3.9)

WR = W j + 1

2
[(1 − κ) �i j · ∇W j + κ�−

i ], (3.10)

where κ is set to 1/3 which corresponds to a nominally third-order accuracy
scheme.

3.2. Characteristics-Based Scheme for Arbitrary Unstructured Grids

In this section, a characteristics-based scheme is derived using the modified Euler equa-
tions as a result of the introduction of the artificial compressibility method (ACM). This is
possible because the modified equations become hyperbolic with the pseudo-time terms.
The advantage of the scheme is that physics-based multidimensional upwinding can be
introduced naturally and implicitly to ensure stability of numerical solutions without the
need to adjust any coefficients.
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The modified Euler equations are rewritten in partial differential form in a Cartesian
coordinate system for the derivation of the method of characteristics,

∂p

∂τ
+ β

∂ui

∂xi
= 0 (3.11)

∂ui

∂τ
+ u j

∂ui

∂x j
+ ui

∂u j

∂u j
+ ∂p

∂xi
= 0 (3.12)

∂ϕ

∂τ
+ u j

∂ϕ

∂x j
= 0, (3.13)

where subscripts i and j equal 1 or 2, representing two spatial coordinates. Suppose that ξ

is a new coordinate outward normal to the boundary of a control volume that surrounds a
particular vertex. In order to extend the method of characteristics to the unstructured grid
solver, it is assumed that flow in the ξ direction is approximately one-dimensional, and the
above equations can then be transformed into

∂p

∂τ
+ β

∂u j

∂ξ
ξx j = 0 (3.14)

∂ui

∂τ
+ u j

∂ui

∂ξ
ξx j + ui

∂u j

∂ξ
ξx j + ∂p

∂ξ
ξxi = 0 (3.15)

∂ϕ

∂τ
+ u j

∂ϕ

∂ξ
ξx j = 0, (3.16)

where ξxi = ∂ξ

∂xi
and ξx j = ∂ξ

∂x j
.

In the τ − ξ space as shown in Fig. 3, flow variable W at pseudo-time level n + 1 can be
calculated along a characteristic k using a Taylor-series expansion and the initial value at
pseudo-time level n (W k)

W = W k + Wξ ξτ�τ + Wτ�τ

and

Wτ = W − W k

�τ
− Wξ ξτ .

λk

WL
WR

n ξ

W n+1

τ

RLWk

FIG. 3. τ − ξ coordinate.
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A wave speed λk is introduced,

ξτ = λk
√

ξxi ξxi ,

and the normal vector components are

nx j = ξx j√
ξxi ξxi

.

Substituting components of Wτ into Eqs. (3.14), (3.15), and (3.16), we have

1√
ξxi ξxi

(p − pk)

�τ
− pξ λ

k + β(uξ nx + vξ ny) = 0 (3.17)

1√
ξxi ξxi

(u − uk)

�τ
− uξ (λ

0 − λk) + u(uξ nx + vξ ny) + pξ nx = 0 (3.18)

1√
ξxi ξxi

(v − vk)

�τ
− vξ (λ

0 − λk) + v(uξ nx + vξ ny) + pξ ny = 0 (3.19)

1√
ξxi ξxi

(ϕ − ϕk)

�τ
+ ϕξ (λ

0 − λk) = 0, (3.20)

where λ0 is the contra-variant velocity

λ0 = unx + vny .

In order to derive the compatibility equations, the spatial derivatives, such as uξ , vξ , and
pξ have to be eliminated from the above equations. Following the approaches of Eberle [19]
for compressible flow equations and Drikakis et al. [18] for incompressible flow equations
on structured grids, each of the above four equations is multiplied by an arbitrary variable
and all the resulting equations are summed to form a new equation,

1

�τ
√

ξxi ξxi

A − pξ B + uξ C + vξ D + ϕξ E = 0, (3.21)

where

A = a(p − pk) + b(u − uk) + c(v − vk)

B = −aλk + bnx + cny

C = anxβ + b(λ0 − λk + unx ) + cvnx (3.22)

D = anyβ + buny + c(λ0 − λk + vny)

E = d(λ0 − λk),

and a, b, c, and d are the arbitrary variables used to multiply the equations. We define the
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coefficients of the partial space derivatives to be zero, i.e., A, B, C, D, and E are zero:

A = 0 (3.23)

B = 0 (3.24)

C = 0 (3.25)

D = 0 (3.26)

E = 0. (3.27)

Equations (3.23) to (3.27) constitute a linear system �X = 0 with X = {a, b, c, d}. Variables
a, b, c, and d are generally nonzero; thus the system of equations has a nontrivial solution.
This means that det(�) = 0, and the following eigenvalues can be derived:

λ1 = λ2 = λ0

λ1 = λ0 +
√

(λ0)2 + β

λ2 = λ0 −
√

(λ0)2 + β.

For each eigenvalue or characteristic speed, characteristic equations can be derived from
Eqs. (3.23) to (3.27). For example, for λk = λ0, we have

a = bnx + cny

λ0
.

Substituting this into Eq. (3.22), we obtain

bnx + cny

λ0
(p − p0) + b(u − u0) + c(v − v0) + d(ϕ − ϕ0) = 0,

i.e.,

b[nx (p − p0) + λ0(u − u0)] + c[ny(p − p0) + λ0(v − v0)] + dλ0(ϕ − ϕ0) = 0.

For any b, c, and d, the above equation is always satisfied. Therefore all the terms in square
brackets are zero.

As a result, we have

(u − u0)ny − (v − v0)nx = 0 (3.28)

ϕ = ϕ0. (3.29)

For λ = λ1,

p − p1 = −λ1[(u − u1)nx + (v − v1)ny]. (3.30)

For λ = λ2,

p − p2 = −λ2[(u − u2)nx + (v − v2)ny]. (3.31)
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Finally, all the variables are determined using the above characteristic Eqs. (3.28) to
(3.31);

ϕ = ϕ0

u = f nx + u0n2
y − v0nx ny

v = f ny + v0n2
x − u0nynx

p = p1 − λ1[(u − u1)nx + (v − v1)ny]

or

p = p2 − λ2[(u − u2)nx + (v − v2)ny],

where

f = 1

2C
[p1 − p2 + nx (λ

1u1 − λ2u2) + ny(λ
1v1 − λ2v2)]

C =
√

(λ0)2 + β.

Flow quantities at n + 1 psuedo-time level obtained from the above equations on the
characteristics are then used to calculate convection fluxes at the control volume interface.
Those on different characteristics at n time level are approximately evaluated by an upwind
scheme using the signs of the characteristics as suggested in [18].

W j = 1

2
[(1 + sign(λ j ))WL + (1 − sign(λ j ))WR],

where WL and WR are obtained by the upwind-biased MUSCL interpolation.

3.3. Matrix-Free Implicit Dual Time-Stepping Scheme

To improve computational efficiency, implicit schemes can be used in order to use the
largest possible time-step sizes permitted by accuracy considerations. However, most im-
plicit schemes require a large amount of computing effort per time step compared with
explicit schemes, making them less attractive for many unsteady flow simulations. Here a
matrix-free implicit scheme is derived, which is found to be efficient in terms of memory re-
quired and computing effort per time step. This is due to the fact that no matrix manipulation
is required by the scheme.

For a certain vertex P , the spatially discretized equations form a system of coupled
ordinary differential equations, which may be written as

∂

∂t
(Wp) = − 1

�Scv

{
nedge∑
k=1

[
( �Fc)

k
i j · (�n�lk)

] − 1

2

ncell∑
i=1

( �Fv · �n�lP)i + SP�Scv

}
(3.32)

= − 1

�Scv
R(WP),
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where the right-hand side represents the residual. An implicit scheme is adopted to
approximate Eq. (3.32), and the semidiscrete form is given as

∂

∂t

(
�ScvW n+1

p

) = −R
(
W n+1

P

)
. (3.33)

The superscript (n + 1) denotes the time level at (n + 1)�t , and all the variables are evaluated
at this time level. In this work, ∂

∂t is discretized using a second-order-accurate backward
differencing formula, and Eq. (3.33) can be rewritten as follows

1.5 �ScvW n+1
p − 2.0 �ScvW n

p + 0.5 �ScvW n−1
p

�t
+ R

(
W n+1

P

) = R̃
(
W n+1

p

) = 0, (3.34)

where R̃(W n+1
p ) is the new modified residual which contains both the time derivative and

flux vectors.
The advantage of the above implicit scheme is that the physical time-step size is restricted

only by numerical accuracy, not by numerical stability. This is especially useful in unsteady
flow simulation where the maximum time-step size is much smaller than the size permitted
by accuracy considerations. The derivative with respect to a fictitious pseudo-time τ is
added to the above equation to reformulate the unsteady Navier–Stokes equation as

�Scv
W n+1, m+1

p − W n+1, m
p

�τ
= R̃

(
W n+1, m

p

)
, (3.35)

whose solution is sought by marching to a pseudo steady state in τ . The superscripts (m + 1)
and (m) denote time levels in pseudo time. Once the artificial steady state is reached, the
derivative of Wp with respect to τ becomes zero, and the solution will satisfy R̃(W n+1

p ) = 0.
This is actually the solution of Eq. (3.34). Hence the original unsteady Navier–Stokes
equations are fully recovered. Therefore instead of solving each time step in the physical
time domain (t), the problem is transferred into a sequence of steady-state computations in
the artificial time domain (τ ).

An approximate flux function is introduced here to simplify the implicit time-stepping
calculation. Following [20], the total flux (including inviscid and viscous fluxes) across a
control-volume surface associated with a certain edge i j can be approximated as

Fi j ≈ 1

2

[ �Fc
i • �n + �Fc

j • �n − |λi j |(Wi − W j )
]
,

where λi j is the spectral radius associated with edge i j .

λi j = �U · �ni j +
√

( �U · �ni j )2 + β2.

A Taylor series expansion is performed for the residual in Eq. (3.35) with respect to the
pseudo time for node i :

R̃
(
W m+1

i

) = R̃
(
W m

i

) + ∂ R̃i

∂Wi
+

jm∑
j= j1

∂ R̃i

∂W j
�W j .
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And in all the R terms, the Taylor series expansions of the fluxes are

∂ Fi j

∂Wi
= 1

2

[
∂ Fc

i j

∂Wi
− |λi j |

]
;

∂ Fi j

∂W j
= 1

2

[
∂ Fc

i j

∂W j
+ |λi j |

]
.

And for the physical time-dependent terms, we have

W m+1
i = W m

i + �Wi .

After combining all the residuals at every node in the flow field into a vector, we have

R(W m+1,n+1) = R(W m,n+1) + A�W,

where

A =
{

∂ Ri

∂W j

}
.

And the whole-field equivalent of Eq. (3.35) can then be rewritten as

�Sn+1
cv

(
�t + 1.5�τ

�t
− A�τ

�Sn+1
cv

)
�W

�τ

= Rn+1,m − 1.5W n+1,m�Sn+1
cv − 2.0W n�Sn

cv + W n−1�Sn−1
cv

�t
;

i.e.,

�Sn+1
cv Ã

�W

�τ
= R̃n+1,m . (3.36)

Thus,

�Sn+1
cv

�W

�τ
= ˜̃Rm+1,n; (3.37)

here

˜̃Rm+1,n = Ã−1 R̃n+1,m;
Ã = �t + 1.5�τ

�t
− A�τ

�Scv
;

R̃n+1,m = R̃n+1,m − 1.5W n+1,m�Sn+1
cv − 2.0W n�Sn

cv + W n−1�Sn−1
cv

�t
.

Further approximation can be introduced in order to achieve maxtrix-free computation.
If we employ point implicit treatment to the above equations, then only the diagonal terms
in Ã are used in the pseudo time-stepping. As a result, the equation for every node can now
be written as

�Sn+1
cvi

�Wi

�τ
= ˜̃Rm+1,n

i ; (3.38)
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here

˜̃Rm+1,n
i = Ã−1

i i R̃m+1,n
i ;

and

Ã−1
i i =

(
�t + 1.5�τ

�t
− Aii�τ

�Scvi

)−1

.

Pseudo time-stepping is then performed on Eq. (3.38). For a five-stage scheme, the stage
coefficients are

α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 1/2, α5 = 1.

To speed up the convergence rate, an implicit residual-smoothing scheme developed for
unstructured grids was employed. The idea behind this scheme is to replace the residual
at one point of the flow field with a smoothed or weighted average of the residuals at the
neighboring points. The averaged residuals are calculated implicitly in order to increase
the maximum CFL number, thus increasing the convergence rate. Normally this procedure
allows the CFL number to be increased by a factor of 2 or 3. The smoothing equation for a
vertex k can be expressed as

R̄k = Rk + εδ2 R̄k, (3.39)

where R is the original residual, R̄ is the smoothed residual, and ε is the smoothing coeffi-
cient.

ε = max

{
1

4

[(
CFL

CFL∗

)2

− 1

]
, 0

}
, (3.40)

where CFL* is the maximum CFL number of the basic scheme.
The solution to the above equations can be obtained on an unstructured grid by a Jacobi

iterative method,

R̄(m)
k = R(0)

k + ε ·
numnod(k)∑

i=1

[
R̄(m)

i − R̄(m)
k

]; (3.41)

R̄(m)
k = R(0)

k + ε · ∑numnod(k)
i=1 R̄(m−1,m)

i

1 + ε · numnod(k)
, (3.42)

i.e., where numnod(k) is the number of neighboring nodes of vertex k.

3.4. Initial and Boundary Conditions

For the nodes along a solid wall, solid wall boundary conditions apply. A nonslip boundary
condition is imposed for all nodes on the wall. The values of the other flow properties, such
as the indicator function and the pressure, are directly calculated at the wall nodes. An inlet
boundary is a boundary where the fluid has a specified velocity distribution. The pressure
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at the inlet is unknown and can be calculated directly. The position of the interface at the
start of the simulation needs to be defined. For nodes that lie along the outlet boundary, the
pressure is fixed at a constant value. Velocity is calculated along the outlet. For transient
calculations, all the initial variables need to be consistent with each other. This can be
achieved by specifying the velocity field as well as the indicator function directly. It is also
necessary to initialize the pressure field to a distribution consistent with the velocity and
density fields in order to reduce computational effort.

4. RESULTS AND DISCUSSION

4.1. Rayleigh–Taylor Instability

The test case considered is similar to that in [22], in which the numerical method is
also based on the ACM and the dual time-stepping scheme, but with structured grids.
The Rayleigh–Taylor instability is considered for two viscous, incompressible fluid lay-
ers with a prescribed density ratio (ρ1/ρ2 = 998/499 = 2) and a uniform kinematic vis-
cosity (ν1/ν2 = 1). The fluids are confined within a periodic domain of width L and
height H(=4L) which is bounded by impermeable walls at the top and bottom of the
flow domain. The flow field is assumed to be symmetric about both its left and right
boundaries.

A single wavelength perturbation is introduced at the fluid interface using the following
nondimensional initial velocity field (adapted from the work of Daly [23]):

u

Uref
=

{
α sin

(
πx
L

)
exp

(−π |y|
L

)
,

y
L > 0,

−α sin
(

πx
L

)
exp

(−π |y|
L

)
,

y
L < 0,

v

Uref
= α cos

(
πx

L

)
exp

(
−π |y|

L

)
.

In [22], α = π A�y
2Uref L , where A is a perturbation amplitude and �y is a representative mesh

increment in the vertical direction. However, in this study, we simply assume that α = 0.25.
The velocity field corresponds to a sinusoidal perturbation of wavelength 2L and the initial
pressure was set to a hydrostatic distribution. Figure 4 illustrates the important conditions
of the problem.

Nondimensional initial pressure is calculated as

P∗ = P(y) − Pref

ρU 2
ref

= ρg(H − y)

ρU 2
ref

,

where Uref = √
gL, H

L = 2.
Therefore,

P∗
lower = 2 − ρ2

ρ1
y∗

P∗
upper = 2 − y∗.
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FIG. 4. Illustration of the Rayleigh–Taylor instability problem.

The three governing dimensionless parameters for the flow are the Reynolds number, the
Weber number, and the Froude number, which are:

Re = UrefL∗

υ
; We = ρU 2

refL
∗

σ
; Fr = U 2

ref

gL∗ .

In this case, the Froude number Fr = 1 due to the definition of the reference velocity, and
the Weber number is 5000.

An initial perturbation causes the light fluid to rise along the left boundary and the heavy
fluid to sink along the right boundary. The displacement of the interface is seen to be nearly
symmetric during the early growth phase of the instability. As the amplitude of the instability
increases, the characteristic mushroom shape emerges in the vicinity of the central vortex.
Eventually, the walls begin to influence the solution during the latter stages of the transient,
especially in the high Reynolds number case. To permit the interface to develop unimpeded
for longer times, a larger computational domain would be required.

The characteristics-based scheme with third-order interpolation is used for this case.
Various meshes of different densities are used for the grid convergence test and are listed in
Table I. Figures 5 and 6 show the predicted interfaces for Re = 100 and 283 with the meshes,
at nondimensional times t = 3.2 and 4. Very small discrepancies are observed between the
medium-grid and fine-grid results, and the fine grid is adopted in all other simulations.
Figure 7 shows the effect of different time-step sizes (0.005 and 0.01) on the predicted
interfaces at Re = 100 and t = 3.2. It is also found that the two time-step sizes produce
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TABLE I

Details of Grids Used

Unstructured grids Number of nodes Number of elements

1 (coarse) 5,151 10,000
2 (medium) 10,251 20,000
3 (fine) 17,226 33,800

exactly the same results. Therefore the larger time-step size is adopted. Presented in Fig. 8
is the predicted motion of the free surface at Re = 283 using the fine grid. The characteristic
mushroom shape of the interface is pronounced at this Reynolds number after time t = 3.
The results obtained are comparable to those presented in [22], although the α value is not
exactly the same for the two tests. In this test, different numbers of subiterations were used
and it was found that 150 subiterations per physical time step can ensure convergent results,
which means that a further increase in the number of subiterations would not change the
results.

4.2. The Broken Dam Problem

In order to assess the accuracy and robustness of the solver in calculating free sur-
face flow problems, the broken dam problem has also been selected as a benchmark test
case. The broken dam problem is a classic problem in free surface hydrodynamics, and
as its name implies, it is basically the sudden collapse of a rectangular column of fluid
onto a horizontal surface. The broken dam problem gets its name due to its use in mod-
elling the sudden failure of a dam. The relatively simple geometry and initial conditions
associated with the problem have made it a popular validation case for various surface
tracking and capturing schemes. The experimental results of the broken dam problem by
Martin and Moyce [24] have been used in the validation of various numerical schemes

Dotted Line: coarse mesh (nnodes=5151)
Dashed Dot-Dotted line: Medium mesh (nnodes=10,251)
Solid line: fine mesh (nnodes=17,226)

Re=100
T=3.2

FIG. 5. Grid convergence study for Re = 100.
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FIG. 6. Grid convergence study for Re = 283.

by Davis [12], Ramaswamy and Kawahara [26], Hirt and Nichols [1], and Koshizuka
et al. [27].

The specific geometry employed in the present work is illustrated in Fig. 9. A rectangular
water column 0.5 m wide and 0.9 m high is enclosed within an air-filled container. It can
be imagined that the water column is initially kept in place by a thin partition or dam on the
right-hand side of the column. At time t = 0+, the partition is removed instantaneously,
thereby allowing the water column to collapse under the influence of gravitational force.

For comparison purposes, our broken dam problem was simulated using two different
schemes, namely (1) the central difference scheme with artificial viscosity and (2) the
characteristics-based upwind scheme. Both schemes were employed using various orders
of accuracy in interpolation. These combinations of schemes and orders of accuracy are
summarized in Table II. The limiter is the Minmod flux limiter.

0 1 2 3 4 5
X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y

R ey=100,

Solid line:dt=0 .005
D otted line:dt=0.01

T=3.2

FIG. 7. Effect of time-step sizes.
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TABLE II

Schemes Tested

Schemes Orders of Accuracy

(1) Central difference scheme (Central) (i) Second order
(ii) Third order

(iii) Third order with limiter

(2) Characteristic upwind (Cha) (i) Second order
(ii) Third order

(iii) Third order with limiter

T=3.2 T=4.0 T=4.8 T=5.6

FIG. 8. Time evolution of the Rayleigh–Taylor instability at Re = 283 (fine grid).

FIG. 9. Illustration of the 2D broken dam problem at t = 0+.
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The initial conditions for the simulation of the broken dam problem were prescribed as
follows. The density field was initialized with values appropriate for each fluid as shown in
Fig. 9. The water column was assigned the density value of 1000 kg/m3 and the remainder of
the computational domain was given the density of air at a value of 1.205 kg/m3. The initial
velocity components were set to zero everywhere and the pressure distribution was defined
to be hydrostatic pressure relative to the top surface of the water column. The pressure,
P(x, y), is initialized as shown in Fig. 9.
For any node within the water column (x ≤ 0.45 m and y ≤ 0.9 m),

P(x, y) = (ρairhair + ρwaterhwater)g.

For any node outside the water column, pressure is given as

P(x, y) = ρairhairg.

No-slip boundary conditions were applied to the four walls of the container. The viscous
coefficient of water is 1.01 × 10−3 Pa.s and the viscous coefficient of the surrounding
air is 1.81 × 10−5 Pa.s. Three sets of meshes are used which have different mesh densities:
(a) mesh A = 1404 nodes; (b) mesh B = 5151 nodes; (c) mesh C = 9660 nodes. In numerical
experiments, results with mesh B and mesh C are basically independent of their respective
mesh sizes; thus mesh B is used for all the calculations.

The profiles of the free surface of the water column at regular time interval (t > 0+) for
simulations by different schemes were then visualized by choosing ϕ = 0.5. Finally, the
length (L) and height (H) of the water column were compared with experimental results
obtained by Martin and Moyce [24]. See Fig. 10 for an illustration of an the motion of the
water column at t > 0.

Figure 11 presents a comparison of the calculated surge front and column height as func-
tions of time using the third-order characteristics-based scheme, which shows an excellent
agreement between the two sets of data. With these encouraging validation results, the other

FIG. 10. Illustration of the 2D broken dam problem at t > 0+.
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FIG. 11. Comparisons of calculated and experimental results: (a) nondimensionalized length of surge front
against time; (b) nondimensionalized column height against time.

schemes with different orders of accuracy listed in Table II are then tested and their results
are compared in Figs. 12 to 15. By observation, the profiles obtained by schemes with a flux
limiter exhibit slower surge front movements as compared to schemes without a limiter.
This is because the addition of a flux limiter tends to smooth out the VOF value near the
interface and makes the schemes diffusive and less accurate. It is noted that even without
the use of a limiter all the schemes with various orders of discretization accuracy remain
stable, thus the limiter is considered redundant here. It is found that there is no distinct
difference in the free surface profiles before t = 0.24. The explanation is that the length of
time into the process is far too short for the different schemes to show any clear-cut visual
discrepancies. However, the differences in results begin to show in the plots after t = 0.24,
as illustrated in Fig. 12. The free surface profiles of the schemes having only second-order
accuracy begin to slow and lag behind. When the all the simulations end at t = 0.6, it is
obvious from Fig. 13 that the free surface profiles generated using the second-order schemes
suffer from a time lag compared to the profiles generated using third-order schemes. This
difference can also be seen in Figs. 14 and 15 in which the length (L) of the surge front
and the column height (H), respectively, are plotted against time. From the plots, it could
be seen that the profiles generated using third-order-accurate schemes do not show much
difference.
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FIG. 12. Free surface profile at t = 0.24: results from different schemes begin to differ.
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FIG. 13. Free surface profile at t = 0.6: results from different schemes.
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FIG. 14. Graph of length of surge front (L) against time (t).
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FIG. 15. Graph of column height (H) against time (t).

4.3. Bubble Rising in a Partially Filled Container

In this example, a two-dimensional bubble rising in a container partially filled with water
is studied. This problem is modelled with a two-fluid system with a density ratio of 1.0 : 2.0.
The heavier fluid is water while the lighter fluid is oil, and the two fluids have densities of
1000 kg/m3 and 500 kg/m3, respectively. Two computer simulations are performed here. The
first computation is performed without the inclusion of surface tension while the second
computation demonstrates the effect of surface tension. The computational domain for
both cases is a 6 D-by-7 D rectangle with D being the initial diameter of the bubble. The
computational mesh adopted after mesh-independent testing consists of 33,600 triangular
mesh elements and 17,061 nodes.

A similar test case has been performed by Pan and Chang [25] also using the ACM and
the dual time-stepping scheme on structured grids. The main difference between their work
and ours is that their problem is modeled by a three-fluid system. Also, surface tension has
not been included in their method. However, their results can still serve as a useful reference.

Initially, the circular oil bubble is immersed in the water that occupies the lower half
of the closed container. A layer of the oil floats above the water. The initial depth of the
water in the container is 5 D with a 1 D thickness of oil floating on it. The center of the oil
bubble is located at 0.5 D below the water surface. The initial velocity field of the entire
computation domain is zero. The Froude number is also set to 1.0. The ratios of both density
and dynamic viscosity of water and oil are 2 : 1. Uniform pressure is assigned to the bubble
that is based on the hydrodynamic pressure at the center of the bubble. The Reynolds and
Weber numbers are defined as

Re = ρwater
√

g(2R0)
3
2

µwater

We = ρwaterg(2R0)
2

σ
,
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ϕ = 0.0

ϕ = 0.0

ϕ = 1.0

FIG. 16. Contour plot showing the initialization of ϕ values.

where R0 denotes the initial radius of the water bubble and the subscript water refers to
physical properties of water.

The Reynolds number used in the calculation is 200, which is the same as in [25]. The ini-
tialization of the fluid volume indicator at t = 0 is shown in Fig. 16. Fluid 1 is water and is as-
signed ϕ = 1.0 while the oil is assigned ϕ = 0.0. Figures 17 and 18 show the time evolution
of the oil bubble in the partially filled container for the two cases. The free surface is shown
at a time interval of 0.5. Figure 17 shows the rising bubble test case without surface tension.
The upward velocity at the bottom flattens the lower half of the bubble at t = 1.5. The bubble
deforms into a kidney shape at around t = 2.0. The bubble continues to deform as it ap-
proaches the water–oil interface because the upper portion of the oil bubble experiences less
buoyancy and is being pushed aside by the lower half of the bubble. This elongates
the oil bubble to both sides. At t = 4.0, the oil bubble almost hits the water–oil inter-
face. Wave motion is observed on the water–oil surface due to the water flow beneath the
surface.

A comparison of our results in Fig. 17 with those obtained by Pan and Chang [25]
(shown in Fig. 19) can be made. It is noted that the two sets of results are very similar.
The discrepancies in the later stages of computation can be attributed to the fact that their
problem is modelled by a three-fluid system and that the fluid floating above the water is
air and not oil.

The time sequence of the rising oil bubble with surface tension is shown in Fig. 18. As
in the earlier test case, the bubble accelerates from its initial position due to the buoyancy
force. No significant differences between the two test cases are observed before t = 1.5. At
times greater than 1.5, the effect of surface tension becomes obvious. With the inclusion of
surface tension, the spherical oil bubble evolved into a saucer shape. Owing to the surface
tension, the deformation caused by the buoyancy force on the oil bubble is less significant
and no kidney-shaped bubble is observed. The lower surface of the oil bubble is also kept
from catching up with the upper surface. Two vortices below the bubble can be observed
and the oil bubble “bursts” at its edge instead.
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FIG. 17. Rising bubble in partially filled container: no surface tension and Re = 200.0, Fr = 1.0.
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FIG. 19. Results of rising bubble problem by Pan and Chang [25].

4.4. Bubble Rising in a Fully Filled Container with Bubble Shedding

In a manner similar to the previous example, the time evolution of a two-dimensional
rising bubble with surface tension was studied. The difference is that the water container is
fully filled with water in this test case. In this case, the time evolution of bubbles is studied
in greater depth. Parametric study is made to understand the effects of viscosity and surface
tension and their interplay, as well as the effect of density ratios in a rising bubble problem.
The shedding of small bubbles is also studied.

Literature review shows that numerous studies have been performed to investigate the
shape evolution of a rising bubble. Experimental observations of bubbles have been reported
by Walters and Davidson [28, 29] and Bhaga and Weber [30]. Lundgren and Mansour [31]
used a boundary-integral method to study the evolution of a bubble from spherical to
mushroom-shape, as well as the formation of a toroidal shape. Sussman et al. [6] used a
level-set approach for computing the shape evolution of a rising bubble.

In this study, computations are performed with the five sets of nondimensionalized param-
eters listed in Table III. To study the effects of density ratio, Weber number, and Reynolds
number, comparisons are made between the five sets of results. The computational domain
for all the cases in this study is a 4 D-by-6.48 D rectangle with D being the diameter of the

TABLE III

List of Test Cases

Test number Figure number Re We ρwater/ρair

1 22 100 200 100/1
2 23 100 200 5/1
3 24 100 50 100/1
4 25 500 50 100/1
5 26 1000 50 100/1
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initial circular bubble. The computational mesh adopted after mesh-independence testing
consists of 93,312 triangular mesh elements and 47,089 nodes, which is a fine mesh due to
the need to capture the fine details of the shedding of tiny bubbles.

Initially, the circular air bubble is immersed in the water that occupies the entire closed
container. The air bubble is initially a perfect circle with a radius of 1.0 D. The center of the
air bubble is located 5.0 D below the top of the container. The initial velocity field of the
entire computation domain is zero. The Froude number is Fr = 1.0. The pressure field is
initialized using static hydrodynamic pressure. Uniform pressure is assigned to the bubble
that is based on the hydrodynamic pressure at the center of the bubble (see Fig. 20).

The static hydrodynamic pressure at the center of the bubble is given as

P(x, y) = (ρair R0 + ρwater hwater)g.

At nodes outside the bubble and within the container, pressure is calculated by

P(x, y) = ρwater hwater g.

The initialization of the fluid volume indicator at t = 0 is shown in Fig. 20. Fluid 1 is water
and is assigned ϕ = 1.0, while the air bubble is assigned ϕ = 0.0.

When the bubble begins to accelerate from its initial position owing to buoyancy, the
pressure gradient on the lower surface is greater than that on the upper surface. A vortex
sheet is observed to develop and the circulation induces a jet of water that pushes the bubble
from its lower surface. This motion of water jet causes the lower surface to deform and a
“liquid tongue” appears. This is shown in Figs. 22 to 26. Initially the water jet does not affect
the upper surface while the lower surface approaches the upper one. Due to the presence

 ϕ = 1.0

  ϕ = 0.0

hwater

R0

P(x,y)

FIG. 20. Initialization of ϕ values.
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FIG. 21. Time evolution of rising bubble; Re = 100, We = 200, density ratio = 100/1.

of surface tension, the lower surface is unable to penetrate the upper one and the layer of
air between them thickens again. As time evolves, the spherical bubble takes the form of a
mushroom shape. Similar to results in [6], our results from Fig. 21 show the “liquid tongue”
and the formation of a bubble skirt. The skirt folds inward, due to the circulation current
under the rising bubble, and eventually detaches from the bubble at some time between
t = 4.5 and t = 5.0. Results in [6] also show that the bubble skirt detaches from the bubble
during this period (4.40 < t < 4.80). Finally, at t = 6.0, two small bubbles trailing behind
the rising bubble are found in the results for Test 1.

In all our tests, it can be observed that the circulation current through the center of
the bubble causes the bubble to deform, resulting in the formation of a mushroom-shaped
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FIG. 22. Time evolution of rising bubble; Re = 100, We = 200, density ratio = 5/1.

bubble. The diameter of the deformed bubble increases as it rises. Also, the inner and outer
radii of the mushroom-shaped bubble increase as it rises and the bubble is observed to “fan
out.” This may be explained in terms of the requirement of a stabilized circulation [31].
During the rise of their two-dimensional bubbles, Walters and Davidson [28] observed
the detachment of small bubbles at the lower extremes. In all our computations, these
detachments of small bubbles at the lower extremes are captured.

Effect of Density Ratios

The effect of density ratios of the two fluids, namely water and air, can be observed
by comparing Figs. 21 and 22. In both cases, the Reynolds number (Re = 100) and Weber
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FIG. 23. Time evolution of rising bubble; Re = 100, We = 50, density ratio = 100/1.

number (We = 200) are identical. The only difference in the two cases is the density ratios of
the two fluids. In Fig. 21, the density ratio of the two fluids is given as ρwater/ρair = 100/1,
while in Fig. 22, it is ρwater/ρair = 5/1.

The two computations show that the circular bubble evolves into similar shapes. However,
it can be observed that the bubble depicted in Fig. 21 rises faster. Figure 26 gives a graphical
comparison of the maximum position reached by the bubble as a function of time for the
two density ratios. An increase in density ratio leads to a faster rise of the bubble. This is
because the resultant buoyancy is greater for the bubble in Fig. 21 as its density is only a
hundredth of that of water. Thus it is “lighter” and rises faster as compared to the bubble
depicted in Fig. 22. It can also be observed that in both test cases, the bubbles develop skirts
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FIG. 24. Time evolution of rising bubble; Re = 500, We = 50, density ratio = 100/1.

at the two extremes. However, the bubble with the lower density ratio, shown in Fig. 22,
allows the skirt to grow longer than that in Fig. 21. In Fig. 21, the skirt is broken off from
the bubble at a time of about 5s. It should also be noted that the change in bubble velocity
due to the change in density ratio is relatively small considering the large change in density
ratio.

Effect of Weber Number

The effect of the Weber number is illustrated by the time evolution of bubbles in Fig. 21
(We = 200) and Fig. 23 (We = 50), which is Test 3. The Reynolds number (Re = 100) and
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FIG. 25. Time evolution of rising bubble; Re = 1000, We = 50, Density ratio = 100/1.

density ratio are identical for both cases. It can be observed that the curvature of the deformed
lower surface in Fig. 23 is lower and the “liquid tongue” piercing into the lower surface of
the bubble is not as sharp as that in Fig. 21. Owing to the surface tension, the deformation
caused by the “liquid tongue” on the lower surface of the air bubble is less significant. As
a result, the lower surface of the bubble in Fig. 23 is unable to come as close to the upper
surface as in Fig. 21. As surface tension increases, the change in shape is similar to that in
[20], where the bubble skirts become thinner and the indentation at the bottom flattens out.
The sizes of small bubbles that detach from the main bulk of air at the two extremes are
also smaller, as shown in Fig. 21. With a higher surface tension, the integrity of the bubble
increases with less shedding of small bubbles.
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FIG. 26. Maximum position of bubble as a function of time.

Effect of Reynolds Number

To study the effect of the Reynolds number, comparisons are made of the results shown
in Fig. 23 (Re = 100), Fig. 24 (Re = 500), and Fig. 25 (Re = 1000). For a high Reynolds
number, the liquid jet below the bubble is strong and the “liquid tongue” is sharper. At
a lower Reynolds number, the higher viscosity increases the form drag and reduces the
liquid jet velocity. This results in a broader and more diffuse velocity distribution. From
Fig. 23 (Re = 100), Fig. 24 (Re = 500), and Fig. 25 (Re = 1000), it can be observed that the
thickness of the bubble skirt increases with increasing Reynolds numbers. The time that
the skirt breaks from the main bubble is about the same (N–D Time = 4.5). However, the
detached bubbles at the two extremes in Figs. 24 and 25 further disintegrate into smaller
bubbles. This is due to the development of a wake at the trailing end. The magnitude of
circulation is higher in the wakes at higher Reynolds numbers, causing the disintegration
of the detached bubble. In Fig. 24 (Re = 500) and Fig. 25 (Re = 1000), smaller bubbles are
observed to be continuously shedded from the main bubble due to higher velocity.

4.5. Micro Ink-Droplet Ejection

Finally a simulation of ink-droplet ejection through a micro nozzle is performed using
the solver developed. The effect of ink properties on the quality of print is investigated. Two

FIG. 27. Computational grid of nozzle.
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FIG. 28. Squirt of ink into air from a nozzle.

sets of simulations on ink-droplet ejection are performed to show how material properties
of the ink would affect the size and shape of the ink droplet. The computational domain
for the present simulation is shown in Fig. 27. This grid is made up of 37,264 triangular
elements and 18,978 nodes. The nozzle is situated at the center of the left vertical wall and
measures just 5 microns. The overall height and length of the computational domain are
50 microns and 200 microns (see Fig. 28).

In the first two simulations the effect of surface tension is investigated. The surface
tension coefficients of ink for the first and second simulations are 1.73 × 10−3 N/m and
7.36 × 10−2 N/m, respectively. In the third and fourth simulations, the Reynolds number
is varied to study the effect of Reynolds number on the motion of the droplet. Aside from
the surface tension coefficient and the Reynolds number, the remaining conditions applied
to the two simulations are identical. The density of the ink is set at 1000 kg/m3 for all the
simulations. At the outlet �1 of the nozzle, the following boundary conditions are applied:

ux = Û (t), uy = 0.

Here Û (t) represents a prescribed velocity variation for the ejected ink and is assumed to
be a function of time. The velocity profile of the ink-ejection pulse used in the simulation
is shown in Fig. 29. From t = 0 to t = 30 µs, ink is ejected with positive velocity and the
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FIG. 29. Definition of inlet velocity Û (t) at the nozzle.
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FIG. 30. Formation of an ink droplet (σ = 1.73 × 10−3 N/m).

peak value is set to be 10 m/s. ϕ is assigned a value of 1 at boundary �1. Between 30 µs
and 45 µs, there is a negative velocity based on experimental observations that ink rushes
back into the chamber to fill up the vacuum created by the collapse of the bubble inside the
ejector chamber. Boundaries �2 and �3 denote the solid wall and the outflow boundaries
(with a fixed pressure), respectively. The computational domain is filled with stationary air
at the initial state.

The results from the simulations are illustrated in Figs. 30 to 32. By varying the value
of the surface tension coefficient while keeping the remaining parameters constant, the
effect of surface tension on droplet ejection could be studied. Figures 30 and 31 show the
emergence of a droplet from the nozzle driven by the positive velocity due to bubble growth
inside the print head chamber, which is normally produced by heating a heater. When the
heating stops and the bubble collapses, the suction causes a reverse flow of the ink column.
From here, the necking of the ejected volume of ink is observed. Due to the momentum, the
leading tip of the ejected ink would continue in its straight line of motion, causing further
necking and finally the detachment of the ink droplet.
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FIG. 31. Formation of an ink droplet (σ = 7.36 × 10−3 N/m).

In Fig. 30, it can be observed that the tail trailed the droplet front relentlessly. The
shortening of this tail is much slower than that observed in Fig. 31. At a time between
130 µs and 150 µs, the tail breaks off from the bulk volume of the ejected ink droplet to
form a satellite droplet. Formation of satellite droplets is a well known phenomenon in a
practical inkjet printing system. They are undesirable for printing applications as they cause
blurring of images because the hitting location of the main ink droplet is different from that
of the satellite droplets.

In Fig. 31, the disappearance of the tail is almost instantaneous due to the higher surface-
tension coefficient used. The simulation shows no sign of formation of satellite droplets and
the droplet gradually forms a spherical droplet due to the effect of surface tension. The frontal
area of the spherical droplet generated in this simulation is very much lower than that gener-
ated in Fig. 30. For printing applications, the effective surface area of impact of such a droplet
on the print surface would be significantly smaller, thus improving the quality of print.

The effect of the Reynolds number on the motion of the ejected ink droplet is illustrated
in Fig. 32. For a lower Reynolds number, the relatively larger viscosity increases the form
drag and reduces the droplet velocity in addition to lowering the fluid moment. This leads
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FIG. 32. Droplet motion with different Reynolds numbers. t measured in microseconds.

to a more diffuse velocity distribution, thus causing the droplet to travel a shorter distance
in a given period. The droplet with a lower Reynolds number is also observed to assume a
spherical shape faster than its counterpart. This could be attributed to the surface tension
force becoming more dominant given the lower Reynolds number. From the above, it is
obvious that chemical engineers have to control the physical properties of the ink used, such
as viscosity and the surface tension coefficient, by changing the components of the ink so
that droplets with optimal properties can be produced.

5. CONCLUDING REMARKS

In this paper, a new method has been successfully developed to simulate complex free
surface flows efficiently. The unstructured grid approach makes the method very flexible
in dealing with complex boundaries. The higher order characteristic-based finite-volume
scheme and the matrix-free implicit dual time-stepping in conjunction with the VOF method
makes it possible to handle complex free surface flows accurately and efficiently. In par-
ticular, the high-order characteristics-based scheme is found to be more accurate than the
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second-order central scheme in numerical tests. Several cases of free surface flows have
been studied with the developed method and the results are excellent in comparison with
experimental measurements and other numerical results. Based on the method, indepth and
parametric studies are performed of bubble rising in liquid and the ejection of micron-sized
droplets from a micro nozzle.

REFERENCES

1. C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput.
Phys. 39, 201 (1981).

2. J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modelling surface tension, J. Comput.
Phys. 100, 335 (1992).

3. J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly, The MAC Method. A Computing Technique for Solving
Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces, LASL Report LA-3425,
Los Alamos (1966).

4. S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on
Hamilton–Jacobi formulations, J. Comput. Phys. 79, 12 (1988).

5. M. Sussman,



FREE SURFACE FLOW SIMULATION 273

22. F. J. Felecy and R. H. Pletcher, Numerical simulation of free surface flows in closed containers using free
surface capture approach, in Advances in Computational Methods in Fluid Dynamics (Am. Soc. Mech. Eng.,
1994), FED-Vol. 196, pp. 33–51.

23. B. J. Daly, Dynamics of liquids in moving containers, Phys. Fluids 10, 297 (1967).

24. J. C. Martin and W. J. Moyce, An experimental study of the collapse of liquid columns on a rigid horizontal
plane, Philos. Trans. R. Soc. London, Ser. A 244, 312 (1952).

25. D. Pan and C. H. Chang, The capturing of free surfaces in incompressible multi-fluid flows, Int. J. Numer.
Meth. Fluids 33, 203 (2000).

26. B. Ramaswamy and M. Kawahara, Lagrangian finite element analysis applied to viscous free-surface fluid
flow, Int. J. Numer. Meth. Fluids 7, 953 (1987).

27. S. Koshizuka, H. Tamako, and Y. Oka, A particle method for incompressible viscous flow with fluid fragmen-
tation, Comput. Fluid Dyn. J. 4, 29 (1995).

28. J. K. Walters and J. F. Davidson, The initial motion of a gas bubble formed in an inviscid liquid. Part 1. The
two-dimensional bubble, J. Fluid Mech. 12, 408 (1962).

29. J. K. Walters and J. F. Davidson, The initial motion of a gas bubble formed in an inviscid liquid. Part 2. The
three-dimensional bubble and the toroidal bubble, J. Fluid Mech. 17, 321 (1963).

30. D. Bhaga and M. E. Weber, Bubbles in viscous liquids: Shapes, wakes and velocities, J. Fluid Mech. 105, 61
(1981).

31. T. S. Lundgren and N. N. Mansour, Vortex bubbles, J. Fluid Mech. 224, 177 (1991).

32. A. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys. 2, 12
(1967).

33. A. Jameson and D. J. Mavriplis, Finite volume solution of the two-dimensional Euler equations on a regular
triangular mesh, AIAA J. 24, 611 (1986).

34. D. B. Kothe, R. C. Ferrel, J. A. Turner, and S. J. Mosso, A High Resolution Finite Volume Method for Efficient
Parallel Simulation of Casting Processes on Unstructured Meshes, Los Alamos National Laboratory Report
LA-UR-97-30 (1997).


	1. INTRODUCTION
	FIG. 1.

	2. MATHEMATICAL MODELS
	3. NUMERICAL METHODS
	FIG. 1d.
	FIG. 2.
	FIG. 3.

	4. RESULTS AND DISCUSSION
	FIG. 4.
	TABLE I
	FIG. 5.
	FIG. 6.
	FIG. 7.
	TABLE II
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.
	FIG. 19.
	TABLE III
	FIG. 20.
	FIG. 21.
	FIG. 22.
	FIG. 23.
	FIG. 24.
	FIG. 25.
	FIG. 26.
	FIG. 27.
	FIG. 28.
	FIG. 29.
	FIG. 30.
	FIG. 31.
	FIG. 32.

	5. CONCLUDING REMARKS
	REFERENCES

